Tremor signals reveal the structure and dynamics of the Oldoinyo Lengai magmatic plumbing system

Tremor signals reveal the structure and dynamics of the Oldoinyo Lengai magmatic plumbing system
  • Mana, S., Furman, T., Turrin, B. D., Feigenson, M. D. & Swisher, C. C. Magmatic activity across the East African North Tanzanian Divergence Zone. J. Geol. Soc. 172, 368 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Muirhead, J. D. et al. Displaced cratonic mantle concen-trates deep carbon during continental rifting. Nature 582, 67–72 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dawson, J. Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature 195, 1075 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Dawson, J. B., Keller, J., Nyamweru, C. Historic and recent eruptive activity of Oldoinyo Lengai. In Carbonatite volcanism: Oldoinyo Lengai and the petrogenesis of natrocarbonatites, IAVCEI Proc Volcanol, 4 (eds, Bell K., Keller J.) 4–22 (Springer, 1995).

  • Sherrod, D. R., Magigita, M. M. & Kwelwa, S. Geologic map of Oldoinyo Lengai (Oldoinyo Lengai) and surroundings, Arusha Region, United Republic of Tanzania. U.S. Geol. Surv. Rep. 65, 2013-1306 (2013).

  • Keller, J., Klaudius, J., Kervyn, M., Ernst, G. G. J. & Mattsson, H. B. Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania. Bull. Volcanol. 72, 893–912 (2010).

    Article 

    Google Scholar
     

  • Klaudius, J. & Keller, J. Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. Lithos 91, 173–190 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Krafft, M. & Keller, J. Temperature measurements in carbonatite lava lakes andflows, Oldoinyo Lengai, Tanzania. Science 245, 168–170 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, T. P. et al. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459, 77–80 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Roecker, S. et al. Subsurface images of the Eastern Rift, Africa, from the joint inversion of body waves, surface waves and gravity: Investigating the role of fluids in early-stage continental rifting. Geophys. J. Int. 210, 931–950 (2017).

    Article 

    Google Scholar
     

  • Reiss, M. C., De Siena, L. & Muirhead, J. D. The Interconnected magmatic plumbing system of the Natron rift. Geophys. Res. Lett. 49, e2022GL098922 (2022).

    Article 

    Google Scholar
     

  • Wauthier, C. & Ho, C. Satellite geodesy unveils a decade of summit subsidence at Ol Doinyo Lengai Volcano, Tanzania. Geophys. Res. Lett. 51, e2023GL107673 (2024).

    Article 

    Google Scholar
     

  • Tournigand, P.-Y. et al. Remote volcano monitoring using crowd-sourced imagery and Structure-from-Motion photogrammetry: a case study of Oldoinyo Lengai’s active pit crater since the 2007–08 paroxysm. J. Volcanol. Geothermal Res. 443, https://doi.org/10.1016/j.jvolgeores.2023.107918 (2023).

  • McNutt S. R. Volcanic tremor. In Encyclopedia of Earth System Science (ed. Nierenberg W. A.) 4 (Academic Press, 1992).

  • McNutt, S. R. Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In Monitoring and Mitigation of Volcanic Hazards (ed. Scarpa, T.) 100–146 (Springer, 1996).

  • Konstantinou, K. I. & Schlindwein, V. Nature, wavefield properties and source mechanism of volcanic tremor: a review. J. Volcanol. Geotherm. Res. 119, 161–187 (2002).

    Article 

    Google Scholar
     

  • McNutt, S. R. & Roman, D. C. Volcanic seismicity. In: The Encyclopedia of Volcanoes, 1011–1034 (Academic Press, 2015).

  • Reiss, M. C. et al. Overview of seismo-acoustic tremor at Oldoinyo Lengai, Tanzania: Shallow storage and eruptions of carbonatite melt. J. Volcanol. Geothermal Res. https://doi.org/10.1016/j.jvolgeores.2023.107898 (2023).

  • Hotovec, A. J., Prejean, S. G., Vidale, J. E. & Gomberg, J. Strongly gliding harmonic tremor during the 2009 eruption of Redoubt volcano. J. Volcanol. Geotherm. Res. 259, 89–99 (2013).

    Article 
    CAS 

    Google Scholar
     

  • D’Agostino, M. et al. Volcano monitoring and early warning on Mt. Etna, Sicily, based on volcanic tremor: Methods and technical aspects. In Complex Monitoring of Volcanic Activity (ed, Zobin, V. M.) 53–92 (Nova Science Publishers, Inc, 2013).

  • Chouet, B. A. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309–316 (1996a).

    Article 
    CAS 

    Google Scholar
     

  • Matoza, R. & Roman, D. One hundred years of advances in volcano seismology and acoustics. Bull. Volcanol. 84, 86 (2022).

    Article 

    Google Scholar
     

  • Roman, D. C. Automated detection and characterization of harmonic tremor in continuous seismic data. Geophys. Res. Lett. 44, https://doi.org/10.1002/2017GL073715 (2017).

  • Chouet, B. A. & Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J. Volcano. Geotherm. Res 252, 108–175 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chouet B. A. (1996b) New methods and future trends in seismological volcano monitoring. In Monitoring and Mitigation of Volcano Hazards (eds, Scarpa, R. & Tilling R. I.) 23–97 (Springer-Verlag, 1996).

  • Aki, K., Fehler, M. & Das, S. Source mechanism of volcanic tremor: fluid driven crack models and their application to the 1963 Kilauea eruption. J. Volcano. Geotherm. Res. 2, 259–287 (1977).

    Article 

    Google Scholar
     

  • Chouet, B. A. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J. Geophys. Res. 93, 4375–4400 (1988).

    Article 

    Google Scholar
     

  • Lesage, P., Mora, M. M., Alvarado, G. E., Pacheco, J. & Metaxian, J. P. Complex behavior and source model of the tremor at Arenal volcano, Costa Rica. J. Volcano. Geotherm. Res. 157, 49–59 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Benoit, J. P. & McNutt, S. R. New constraints on source processes of volcanic tremor at Arenal Volcano, Costa Rica, using broadband seismic data. Geophys. Res. Lett. 24, 449–452 (1997).

    Article 

    Google Scholar
     

  • Julian, B. R. Volcanic tremor: nonlinear excitation by fluid flow. J. Geophys. Res. 99, 11859–11877 (1994).

    Article 

    Google Scholar
     

  • Schlindwein, V., Wassermann, J. & Scherbaum, F. Spectral analysis of harmonic tremor signals at Mt. Semeru volcano, Indonesia. Geophys. Res. Lett. 22, 1685–1688 (1995).

    Article 

    Google Scholar
     

  • Hagerty, M. T., Schwartz, S. Y., Garces, M. A. & Protti, M. Analysis of seismic and acoustic observations at Arenal Volcano, Costa Rica, 1995–1997. J. Volcano. Geotherm. Res. 101, 27–65 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Seydoux, L., Shapiro, N. M., De Rosny, J., Brenguier, F. & Landes, M. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays. Geophys. J. Int. 204, 1430–1442 (2016).

    Article 

    Google Scholar
     

  • Soubestre, J. et al. Depth migration of seismovolcanic tremor sources below the Klyuchevskoy Volcanic group (Kamchatka) determined from a network-based analysis. Geophys. Res. Lett. 46, 8018–8030 (2019).

    Article 

    Google Scholar
     

  • Journeau, C. et al. Seismic tremor reveals active trans-crustal magmatic system beneath Kamchatka volcanoes. Sci. Adv. 8, https://doi.org/10.1126/sciadv.abj1571 (2022).

  • Reiss, M. C., Rümpker, G. SEISVOL – Seismic and Infrasound Networks to study the volcano Oldoinyo Lengai. GFZ Data Services. [Dataset]. https://doi.org/10.14470/4W7564850022 (2020).

  • Reiss, M. C. et al. The impact of complex volcanic plumbing on the nature of Seismicity in the developing Magmatic Natron Rift, Tanzania. Front. Earth Sci. 8, 609805 (2021).

    Article 

    Google Scholar
     

  • Weinstein, A., Oliva, S. J., Ebinger, C. J., Roecker, S. & Tiberi, C. Fault magma interactions during early continental rifting: seismicity of the Magadi-Natron-Manyara basins, Africa. Geochem. Geophys. Geosyst. 18, 3662–3686 (2017).

    Article 

    Google Scholar
     

  • Plasman, M. et al. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa. Geophys. J. Int. 210, 465–481 (2017).

    Article 

    Google Scholar
     

  • Biggs, J., Chivers, M. & Hutchinson, M. C. Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys. J. Int. 195, 16–26 (2013).

    Article 

    Google Scholar
     

  • Daud, N. et al. Elucidating the magma plumbing system of Ol Doinyo Lengai (Natron Rift, Tanzania) Using satellite geodesy and numerical modeling. J. Volcanol. Geothermal Res. 438, https://doi.org/10.1016/j.jvolgeores.2023.107821 (2023).

  • Liu, K. & Zhao, J. Progressive damage behaviours of triaxially confined rocks under multiple dynamic loads. Rock. Mech. Rock. Eng. 54, 3327–3358 (2021).

    Article 

    Google Scholar
     

  • Berkesi, M., Bali, E., Bodnar, R. J., Szabó, Á., & Guzmics, T. Carbonatite and highly peralkaline nephelinite melts from Oldoinyo Lengai Volcano, Tanzania: the role of natrite-normative fluid degassing. Gondwana Res. 85, 76–83 (2020).

  • Fehler, M. Observations of volcanic tremor at Mount St. Helens Volcano. J. Geophys. Res. 88, 3476–3484 (1983).

    Article 

    Google Scholar
     

  • Neuberg, J., Baptie, B., Luckett, R. & Stewart, R. Results from the broadband seismic network on Montserrat. Geophys. Res. Lett. 25, 3661–3664 (1998).

    Article 

    Google Scholar
     

  • Neuberg, J., Luckett, R., Baptie, B. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcano. Geotherm. Res. 101, 83–104 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chouet, B. Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J. Geophys. Res. 90, 1881–1893 (1985).

    Article 

    Google Scholar
     

  • de Moor, M. et al. Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): implications for carbonatite genesis and eruptive behavior. Earth Planet. Sci. Lett. 361, 379–390 (2012).

    Article 

    Google Scholar
     

  • Aki, K. & Koyanagi, R. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. J. Geophys. Res. 86, 7095–7109 (1981).

    Article 

    Google Scholar
     

  • Yukutake, Y. et al. Harmonic tremor from the deep part of Hakone volcano. Earth Planets Space 74, 144 (2022).

    Article 

    Google Scholar
     

  • Longpré, M. A. et al. Shifting melt composition linked to volcanic tremor at Cumbre Vieja volcano. Nat. Geosci. 1–9, https://doi.org/10.1038/s41561-024-01623-x (2025).

  • Coppess, K., Lam, F., & Dunham, E. Volcanic eruption tremor from particle impacts and turbulence using conduit flow models. Seismica, 4, https://doi.org/10.26443/seismica.v4i1.1285 (2025).

  • Kumagai, H. & Chouet, B. A. The dependence of acoustic properties of a crack on the resonance mode and geometry. Geophys. Res. Lett. 28, 3325–3328 (2001).

    Article 

    Google Scholar
     

  • Walter, B. F. et al. Fluids associated with carbonatitic magmatism: A critical review and implications for carbonatite magma ascent. Earth Sci. Rev. 215, 103509 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bertin, D. et al. High effusion rates of the Cordón Caulle 2011–2012 eruption (Southern Andes) and their relation with the quasi-harmonic tremor. Geophys. Res. Lett. 42, 7054–7063 (2015).

    Article 

    Google Scholar
     

  • Liang, C., Peng, J., Ampuero, J. P., Shauer, N. & Dai, K. Resonances of fluid-filled cracks with complex geometry and application to very long period (VLP) seismic signals at Mayotte submarine volcano. J. Geophys. Res.Solid Earth 129, e2023JB027844 (2024).

    Article 

    Google Scholar
     

  • Kumagai, H. Temporal evolution of a magmatic dike system inferred from the complex frequencies of very long period seismic signals. J. Geophys. Res. Solid Earth 111, https://doi.org/10.1029/2005JB003881 (2006).

  • Jones, R. K. The well-tempered timpani, in search of the missing fundamental. https://wtt.pauken.org/preface. Last accessed on 25th September 2025.

  • Ramsey, G. P. Percussion Instrument Group. In: The Physics of Music. Undergraduate Lecture Notes in Physics. Springer, https://doi.org/10.1007/978-3-031-53507-9_8 (2024).

  • Karlstrom, L. & Dunham, E. M. Excitation and resonance of acoustic-gravity waves in a column of stratified, bubbly magma. J. Fluid Mech. 797, 431–470 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Crozier, J. & Karlstrom, L. Evolving magma temperature and volatile contents over the 2008–2018 summit eruption of KÄ«lauea Volcano. Sci. Adv. 8, eabm4310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McQuillan, M. & Karlstrom, L. Fluid resonance in elastic-walled englacial transport networks. J. Glaciol. 67, 999–1012 (2021).

    Article 

    Google Scholar
     

  • Ferrick, M. G., Qamar, A. & St. Lawrence, W. F. Source mechanism of volcanic tremor. J. Geophys. Res. Solid Earth 87, 8675–8683 (1982).

    Article 

    Google Scholar
     

  • Balmforth, N. J., Craster, R. V. & Rust, A. C. Instability in flow through elastic conduits and volcanic tremor. J. Fluid Mech. 527, 353–377 (2005).

    Article 

    Google Scholar
     

  • Soubestre, J. et al. Network-based detection and classification of seismovolcanic tremors: Example from the Klyuchevskoy volcanic group in Kamchatka. J. Geophys. Res.Solid Earth 123, 564–582 (2018).

    Article 

    Google Scholar
     

  • Albaric, J. et al. Contrasted seismogenic and rheological behaviours from shallow and deep earthquake sequences in the North Tanzanian Divergence, East Africa. J. Afr. Earth Sci. 58, 799–811 (2010).

    Article 

    Google Scholar
     

  • Stein, S & Wysession, M. An introduction to seismology, earthquakes, and earth structure. (John Wiley & Sons, 2009).

  • Shearer, P. M. Introduction to seismology. (Cambridge university press, 2019).

  • Caudron, C. et al. Anatomy of phreatic eruptions. Earth Planets Space 70, 1–14 (2018).

    Article 

    Google Scholar
     

  • Krischer, L. et al. ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov. 8, 014003 (2015).

    Article 

    Google Scholar
     

  • Vidale, J. E. Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am. 76, 1393–1405 (1986).


    Google Scholar
     

  • Petibon, C. M., Kjarsgaard, B. A., Jenner, G. A. & Jackson, S. E. Phase relationships of a silicate-bearing natrocarbonatite from Oldoinyo Lengai at 20 and 100 MPa. J. Petrol. 39, 2137–2151 (1998).

    Article 
    CAS 

    Google Scholar
    Â