Lautenschlager, K. et al. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res. 47, 3015â3025 (2013).
Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W. & Liu, W.-T. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl. Environ. Microbiol. 78, 7856â7865 (2012).
Pinto, A. J., Schroeder, J., Lunn, M., Sloan, W. & Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 5, e01135â14 (2014).
Hull, N. M. et al. Longitudinal and source-to-tap New Orleans, LA, U.S.A. Drinking water microbiology. Environ. Sci. Technol. 51, 4220â4229 (2017).
Perrin, Y., Bouchon, D., Delafont, V., Moulin, L. & Héchard, Y. Microbiome of drinking water: a full-scale spatio-temporal study to monitor water quality in the Paris distribution system. Water Res. 149, 375â385 (2019).
Dai, Z. et al. Disinfection exhibits systematic impacts on the drinking water microbiome. Microbiome 8, 42 (2020).
Zhang, Y., Oh, S. & Liu, W. Impact of drinking water treatment and distribution on the microbiome continuum: an ecological disturbanceâs perspective. Environ. Microbiol. 19, 3163â3174 (2017).
Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2, e01102 (2013).
Cremers, G. et al. Draft genome sequence of a novel Methylobacterium brachiatum strain isolated from human skin.Microbiol. Resour. Announc. 9, e01093â20 (2020).
Gallego, V., GarcÃa, M. T. & Ventosa, A. Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int. J. Syst. Evol. Microbiol. 56, 339â342 (2006).
Kip, N. & van Veen, J. A. The dual role of microbes in corrosion. ISME J. 9, 542â551 (2015).
Tung, H. & Xie, Y. F. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Res. 43, 971â978 (2009).
Berry, D., Xi, C. & Raskin, L. Microbial ecology of drinking water distribution systems. Curr. Opin. Biotechnol. 17, 297â302 (2006).
Vacs Renwick, D., Heinrich, A., Weisman, R., Arvanaghi, H. & Rotert, K. Potential public health impacts of deteriorating distribution system infrastructure. J. Am. Water Works Assoc. 111, 42â53 (2019).
Hull, N. M. et al. Drinking water microbiome project: is it time? Trends Microbiol. 27, 670â677 (2019).
Favere, J. et al. Safeguarding the microbial water quality from source to tap. npj Clean Water 4, 28 (2021).
Prest, E. I., Hammes, F., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45 (2016).
Drinking Water Distribution Systems: Assessing and Reducing Risks (National Academies Press, 2006); https://doi.org/10.17226/11728
Rhoads, W. J., Pruden, A. & Edwards, M. A. Survey of green building water systems reveals elevated water age and water quality concerns. Environ. Sci. Water Res. Technol. 2, 164â173 (2016).
Wang, H., Edwards, M., Falkinham, J. O. & Pruden, A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl. Environ. Microbiol. 78, 6285â6294 (2012).
Lautenschlager, K., Boon, N., Wang, Y., Egli, T. & Hammes, F. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res. 44, 4868â4877 (2010).
Ling, F., Whitaker, R., LeChevallier, M. W. & Liu, W.-T. Drinking water microbiome assembly induced by water stagnation. ISME J. 12, 1520â1531 (2018).
Wang, H. et al. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: a review. Water Res. 117, 68â86 (2017).
Vosloo, S. et al. Gradual recovery of building plumbing-associated microbial communities after extended periods of altered water demand during the COVID-19 pandemic. Environ. Sci. Technol. 57, 3248â3259 (2023).
Yao, M. et al. Building water quality deterioration during water supply restoration after interruption: influences of premise plumbing configuration. Water Res. 241, 120149 (2023).
Dowdell, K. S. et al. Legionella pneumophila occurrence in reduced-occupancy buildings in 11 cities during the COVID-19 pandemic. Environ. Sci.-Wat. Res. 9, 2847â2865 (2023).
Logan-Jackson, A. R. et al. A critical review on the factors that influence opportunistic premise plumbing pathogens: from building entry to fixtures in residences. Environ. Sci. Technol. 57, 6360â6372 (2023).
Song, Y., Finkelstein, R., Rhoads, W., Edwards, M. A. & Pruden, A. Shotgun metagenomics reveals impacts of copper and water heater anodes on pathogens and microbiomes in hot water plumbing systems. Environ. Sci. Technol. 57, 13612â13624 (2023).
Rhoads, W. J. et al. Residential water heater cleaning and occurrence of Legionella in Flint, MI. Water Res. 171, 115439 (2020).
Mathys, W., Stanke, J., Harmuth, M. & Junge-Mathys, E. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int. J. Hyg. Environ. Health 211, 179â185 (2008).
Haig, S.-J., Kotlarz, N., LiPuma, J. J. & Raskin, L. A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium. mBio 9, e02354-17 (2018).
Haig, S.-J. et al. Emerging investigator series: bacterial opportunistic pathogen gene markers in municipal drinking water are associated with distribution system and household plumbing characteristics. Environ. Sci. Water Res. Technol. 6, 3032â3043 (2020).
Dowdell, K. et al. Nontuberculous Mycobacteria in drinking water systems â the challenges of characterization and risk mitigation. Curr. Opin. Biotechnol. 57, 127â136 (2019).
Ma, L. et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome 5, 154 (2017).
Ma, L., Li, B. & Zhang, T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 152, 191â201 (2019).
Xu, L. et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ. Pollut. 213, 119â126 (2016).
Dias, M. F. et al. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Res. 174, 115630 (2020).
Gulati, P. & Ghosh, M. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution. J. Water Health 15, 942â954 (2017).
Vega-Dominguez, P. et al. Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns. Cell Surf. 6, 100043 (2020).
Akram, S. M., Rathish, B. & Saleh, D. Mycobacterium chelonae infection. in StatPearls (StatPearls, 2022).
Abudaff, N. N. & Beam, E. Mycobacterium arupense: a review article on an emerging potential pathogen in the Mycobacterium terrae complex. J. Clin. Tuberc. Mycobact. Dis. 10, 1â5 (2017).
Beydoun, N., Wiley, Z. & Rouphael, N. Mycobacterium mucogenicum bacteremia in an immunocompetent host: a case report and concise review. IDCases 23, e01032 (2020).
Pradier, M. et al. Mycobacterium mucogenicum bacteremia: major role of clinical microbiologists. BMC Infect. Dis. 18, 646 (2018).
Chang, H.-Y., Tsai, W.-C., Lee, T.-F. & Sheng, W.-H. Mycobacterium gordonae infection in immunocompromised and immunocompetent hosts: a series of seven cases and literature review. J. Formos. Med. Assoc. 120, 524â532 (2021).
Freyne, B. & Curtis, N. Mycobacterium gordonae skin infection in an immunocompetent child. Pediatr. Infect. Dis. J. 36, 523â525 (2017).
Mazumder, S. A., Hicks, A. & Norwood, J. Mycobacterium gordonae pulmonary infection in an immunocompetent adult. North Am. J. Med. Sci. 2, 205â207 (2010).
Senozan, E. A., Adams, D. J., Giamanco, N. M., Warwick, A. B. & Eberly, M. D. A catheter-related bloodstream infection with Mycobacterium frederiksbergense in an immunocompromised child. Pediatr. Infect. Dis. J. 34, 445â447 (2015).
Torosian, A., Ly, L., Murina, A. & Bitar, C. A case of cutaneous Mycobacterium llatzerense. JAAD Case Rep. 31, 53â55 (2022).
Hung, Y.-T. et al. Clinical characteristics of patients with Acinetobacter junii infection. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 42, 47â53 (2009).
Abo-Zed, A., Yassin, M. & Phan, T. Acinetobacter junii as a rare pathogen of urinary tract infection. Urol. Case Rep. 32, 101209 (2020).
Sudan, S. K. et al. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. Int. J. Syst. Evol. Microbiol. 68, 402â408 (2018).
Tao, Y., Zhou, Y., He, X., Hu, X. & Li, D. Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int. J. Syst. Evol. Microbiol. 64, 95â100 (2014).
E, D. et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48, D561âD569 (2020).
Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714â5718 (2009).
Hou, A.-M. et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps. Water Res. 156, 366â371 (2019).
Martinez, J. L. et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol. Rev. 33, 430â449 (2009).
Blanco, P. et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4, 14 (2016).
Amsalu, A. et al. Worldwide distribution and environmental origin of the Adelaide imipenemase (AIM-1), a potent carbapenemase in Pseudomonas aeruginosa. Microb. Genomics 7, 000715 (2021).
Laurent, F. et al. Biochemical-genetic analysis and distribution of FAR-1, a class A β-lactamase from Nocardia farcinica. Antimicrob. Agents Chemother. 43, 1644â1650 (1999).
Meletis, G. Carbapenem resistance: overview of the problem and future perspective. Ther. Adv. Infect. Dis. 3, 15â21 (2016).
Stoczko, M., Frère, J.-M., Rossolini, G. M. & Docquier, J.-D. Postgenomic scan of metallo-β-lactamase homologues in Rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob. Agents Chemother. 50, 1973â1981 (2006).
Critically Important Antimicrobials for Human Medicine (World Health Organization, 2019).
Dai, D., Rhoads, W. J., Edwards, M. A. & Pruden, A. Shotgun metagenomics reveals taxonomic and functional shifts in hot water microbiome due to temperature setting and stagnation. Front. Microbiol. 9, 2695 (2018).
Tian, L. et al. Deciphering functional redundancy in the human microbiome. Nat. Commun. 11, 6217 (2020).
Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621â624 (2013).
Galand, P. E., Pereira, O., Hochart, C., Auguet, J. C. & Debroas, D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 12, 2470â2478 (2018).
Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).
Sun, C. et al. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Res. 200, 117295 (2021).
Lou, E. G., Fu, Y., Wang, Q., Treangen, T. J. & Stadler, L. B. Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. J. Hazard. Mater. 469, 133939 (2024).
Arango-Argoty, G. A. et al. NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome 7, 88 (2019).
Wu, Z. et al. Nanopore-based long-read metagenomics uncover the resistome intrusion by antibiotic resistant bacteria from treated wastewater in receiving water body. Water Res. 226, 119282 (2022).
Liguori, K. et al. Antimicrobial resistance monitoring of water environments: a framework for standardized methods and quality control. Environ. Sci. Technol. 56, 9149â9160 (2022).
Proctor, C. et al. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. Water Res. 211, 117997 (2022).
Hamilton, K. A., Weir, M. H. & Haas, C. N. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res. 109, 310â326 (2017).
Garner, E., Zhu, N., Strom, L., Edwards, M. & Pruden, A. A human exposome framework for guiding risk management and holistic assessment of recycled water quality. Environ. Sci. Water Res. Technol. 2, 580â598 (2016).
Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388â1391 (2010).
Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892â16898 (2019).
Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836âE845 (2014).
Ning, D. et al. Environmental stress mediates groundwater microbial community assembly. Nat. Microbiol. 9, 490â501 (2024).
Bautista-de los Santos, Q. M. et al. The impact of sampling, PCR, and sequencing replication on discerning changes in drinking water bacterial community over diurnal time-scales. Water Res. 90, 216â224 (2016).
Gabrielli, M., Turolla, A. & Antonelli, M. Bacterial dynamics in drinking water distribution systems and flow cytometry monitoring scheme optimization. J. Environ. Manage. 286, 112151 (2021).
Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371â4378 (1991).
Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W. & Liu, W.-T. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms. Microbes Environ. 27, 9â18 (2012).
Preheim, S. P. et al. Computational methods for high-throughput comparative analyses of natural microbial communitie. Methods Enzymol. 531, 353â370 (2013).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852â857 (2019).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581â583 (2016).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590âD596 (2013).
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2âs q2-feature-classifier plugin. Microbiome 6, 90 (2018).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927â930 (2003).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Xu, H. et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114â2120 (2014).
Blanco-MÃguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633â1644 (2023).
Sun, Z. et al. Challenges in benchmarking metagenomic profilers. Nat. Methods 18, 618â626 (2021).
Meehan, C. J., Barco, R. A., Loh, Y.-H. E., Cogneau, S. & Rigouts, L. Reconstituting the genus Mycobacterium. Int. J. Syst. Evol. Microbiol. 71, 004922 (2021).
Zhang, L., Lin, T.-Y., Liu, W.-T. & Ling, F. Toward characterizing environmental sources of non-tuberculous Mycobacteria (NTM) at the species level: a tutorial review of NTM phylogeny and phylogenetic classification. ACS Environ. Au 4, 127â141 (2024).
Velsko, I. M., Frantz, L. A. F., Herbig, A., Larson, G. & Warinner, C. Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research. mSystems https://doi.org/10.1128/msystems.00080-18 (2018).
Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679â689 (2019).
Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1â26 (2008).
R: The R project for Statistical Computing (R Project, 2024).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455â477 (2012).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824â834 (2017).
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068â2069 (2014).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinforma. Oxf. Engl. 28, 3150â3152 (2012).
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309âD314 (2019).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357â359 (2012).
Prestat, E. et al. FOAM (Functional Ontology Assignments for Metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Res. 42, e145 (2014).
White III, R. A. & Figueroa, J. Functional Ontology Assignments for Metagenomes (FOAM) database. Open Science Framework https://osf.io/muan4 (2023).