Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing

Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing
  • Lautenschlager, K. et al. A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res. 47, 3015–3025 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W. & Liu, W.-T. Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl. Environ. Microbiol. 78, 7856–7865 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, A. J., Schroeder, J., Lunn, M., Sloan, W. & Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 5, e01135–14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hull, N. M. et al. Longitudinal and source-to-tap New Orleans, LA, U.S.A. Drinking water microbiology. Environ. Sci. Technol. 51, 4220–4229 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perrin, Y., Bouchon, D., Delafont, V., Moulin, L. & Héchard, Y. Microbiome of drinking water: a full-scale spatio-temporal study to monitor water quality in the Paris distribution system. Water Res. 149, 375–385 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Z. et al. Disinfection exhibits systematic impacts on the drinking water microbiome. Microbiome 8, 42 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Oh, S. & Liu, W. Impact of drinking water treatment and distribution on the microbiome continuum: an ecological disturbance’s perspective. Environ. Microbiol. 19, 3163–3174 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2, e01102 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cremers, G. et al. Draft genome sequence of a novel Methylobacterium brachiatum strain isolated from human skin.Microbiol. Resour. Announc. 9, e01093–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallego, V., García, M. T. & Ventosa, A. Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int. J. Syst. Evol. Microbiol. 56, 339–342 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kip, N. & van Veen, J. A. The dual role of microbes in corrosion. ISME J. 9, 542–551 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tung, H. & Xie, Y. F. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Res. 43, 971–978 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berry, D., Xi, C. & Raskin, L. Microbial ecology of drinking water distribution systems. Curr. Opin. Biotechnol. 17, 297–302 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vacs Renwick, D., Heinrich, A., Weisman, R., Arvanaghi, H. & Rotert, K. Potential public health impacts of deteriorating distribution system infrastructure. J. Am. Water Works Assoc. 111, 42–53 (2019).

    Article 

    Google Scholar
     

  • Hull, N. M. et al. Drinking water microbiome project: is it time? Trends Microbiol. 27, 670–677 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Favere, J. et al. Safeguarding the microbial water quality from source to tap. npj Clean Water 4, 28 (2021).

    Article 

    Google Scholar
     

  • Prest, E. I., Hammes, F., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. Biological stability of drinking water: controlling factors, methods, and challenges. Front. Microbiol. 7, 45 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drinking Water Distribution Systems: Assessing and Reducing Risks (National Academies Press, 2006); https://doi.org/10.17226/11728

  • Rhoads, W. J., Pruden, A. & Edwards, M. A. Survey of green building water systems reveals elevated water age and water quality concerns. Environ. Sci. Water Res. Technol. 2, 164–173 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Edwards, M., Falkinham, J. O. & Pruden, A. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl. Environ. Microbiol. 78, 6285–6294 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lautenschlager, K., Boon, N., Wang, Y., Egli, T. & Hammes, F. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res. 44, 4868–4877 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling, F., Whitaker, R., LeChevallier, M. W. & Liu, W.-T. Drinking water microbiome assembly induced by water stagnation. ISME J. 12, 1520–1531 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: a review. Water Res. 117, 68–86 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosloo, S. et al. Gradual recovery of building plumbing-associated microbial communities after extended periods of altered water demand during the COVID-19 pandemic. Environ. Sci. Technol. 57, 3248–3259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, M. et al. Building water quality deterioration during water supply restoration after interruption: influences of premise plumbing configuration. Water Res. 241, 120149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dowdell, K. S. et al. Legionella pneumophila occurrence in reduced-occupancy buildings in 11 cities during the COVID-19 pandemic. Environ. Sci.-Wat. Res. 9, 2847–2865 (2023).

    CAS 

    Google Scholar
     

  • Logan-Jackson, A. R. et al. A critical review on the factors that influence opportunistic premise plumbing pathogens: from building entry to fixtures in residences. Environ. Sci. Technol. 57, 6360–6372 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y., Finkelstein, R., Rhoads, W., Edwards, M. A. & Pruden, A. Shotgun metagenomics reveals impacts of copper and water heater anodes on pathogens and microbiomes in hot water plumbing systems. Environ. Sci. Technol. 57, 13612–13624 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhoads, W. J. et al. Residential water heater cleaning and occurrence of Legionella in Flint, MI. Water Res. 171, 115439 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathys, W., Stanke, J., Harmuth, M. & Junge-Mathys, E. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating. Int. J. Hyg. Environ. Health 211, 179–185 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Haig, S.-J., Kotlarz, N., LiPuma, J. J. & Raskin, L. A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium. mBio 9, e02354-17 (2018).

  • Haig, S.-J. et al. Emerging investigator series: bacterial opportunistic pathogen gene markers in municipal drinking water are associated with distribution system and household plumbing characteristics. Environ. Sci. Water Res. Technol. 6, 3032–3043 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dowdell, K. et al. Nontuberculous Mycobacteria in drinking water systems – the challenges of characterization and risk mitigation. Curr. Opin. Biotechnol. 57, 127–136 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome 5, 154 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L., Li, B. & Zhang, T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 152, 191–201 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ. Pollut. 213, 119–126 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias, M. F. et al. Exploring the resistome, virulome and microbiome of drinking water in environmental and clinical settings. Water Res. 174, 115630 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulati, P. & Ghosh, M. Biofilm forming ability of Sphingomonas paucimobilis isolated from community drinking water systems on plumbing materials used in water distribution. J. Water Health 15, 942–954 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Vega-Dominguez, P. et al. Biofilms of the non-tuberculous Mycobacterium chelonae form an extracellular matrix and display distinct expression patterns. Cell Surf. 6, 100043 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akram, S. M., Rathish, B. & Saleh, D. Mycobacterium chelonae infection. in StatPearls (StatPearls, 2022).

  • Abudaff, N. N. & Beam, E. Mycobacterium arupense: a review article on an emerging potential pathogen in the Mycobacterium terrae complex. J. Clin. Tuberc. Mycobact. Dis. 10, 1–5 (2017).

  • Beydoun, N., Wiley, Z. & Rouphael, N. Mycobacterium mucogenicum bacteremia in an immunocompetent host: a case report and concise review. IDCases 23, e01032 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradier, M. et al. Mycobacterium mucogenicum bacteremia: major role of clinical microbiologists. BMC Infect. Dis. 18, 646 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, H.-Y., Tsai, W.-C., Lee, T.-F. & Sheng, W.-H. Mycobacterium gordonae infection in immunocompromised and immunocompetent hosts: a series of seven cases and literature review. J. Formos. Med. Assoc. 120, 524–532 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Freyne, B. & Curtis, N. Mycobacterium gordonae skin infection in an immunocompetent child. Pediatr. Infect. Dis. J. 36, 523–525 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mazumder, S. A., Hicks, A. & Norwood, J. Mycobacterium gordonae pulmonary infection in an immunocompetent adult. North Am. J. Med. Sci. 2, 205–207 (2010).


    Google Scholar
     

  • Senozan, E. A., Adams, D. J., Giamanco, N. M., Warwick, A. B. & Eberly, M. D. A catheter-related bloodstream infection with Mycobacterium frederiksbergense in an immunocompromised child. Pediatr. Infect. Dis. J. 34, 445–447 (2015).

  • Torosian, A., Ly, L., Murina, A. & Bitar, C. A case of cutaneous Mycobacterium llatzerense. JAAD Case Rep. 31, 53–55 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, Y.-T. et al. Clinical characteristics of patients with Acinetobacter junii infection. J. Microbiol. Immunol. Infect. Wei Mian Yu Gan Ran Za Zhi 42, 47–53 (2009).

    PubMed 

    Google Scholar
     

  • Abo-Zed, A., Yassin, M. & Phan, T. Acinetobacter junii as a rare pathogen of urinary tract infection. Urol. Case Rep. 32, 101209 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudan, S. K. et al. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. Int. J. Syst. Evol. Microbiol. 68, 402–408 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, Y., Zhou, Y., He, X., Hu, X. & Li, D. Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int. J. Syst. Evol. Microbiol. 64, 95–100 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • E, D. et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48, D561–D569 (2020).

    Article 

    Google Scholar
     

  • Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714–5718 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, A.-M. et al. Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps. Water Res. 156, 366–371 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, J. L. et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol. Rev. 33, 430–449 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco, P. et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4, 14 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amsalu, A. et al. Worldwide distribution and environmental origin of the Adelaide imipenemase (AIM-1), a potent carbapenemase in Pseudomonas aeruginosa. Microb. Genomics 7, 000715 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Laurent, F. et al. Biochemical-genetic analysis and distribution of FAR-1, a class A β-lactamase from Nocardia farcinica. Antimicrob. Agents Chemother. 43, 1644–1650 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meletis, G. Carbapenem resistance: overview of the problem and future perspective. Ther. Adv. Infect. Dis. 3, 15–21 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoczko, M., Frère, J.-M., Rossolini, G. M. & Docquier, J.-D. Postgenomic scan of metallo-β-lactamase homologues in Rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob. Agents Chemother. 50, 1973–1981 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Critically Important Antimicrobials for Human Medicine (World Health Organization, 2019).

  • Dai, D., Rhoads, W. J., Edwards, M. A. & Pruden, A. Shotgun metagenomics reveals taxonomic and functional shifts in hot water microbiome due to temperature setting and stagnation. Front. Microbiol. 9, 2695 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, L. et al. Deciphering functional redundancy in the human microbiome. Nat. Commun. 11, 6217 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galand, P. E., Pereira, O., Hochart, C., Auguet, J. C. & Debroas, D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 12, 2470–2478 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, C. et al. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Res. 200, 117295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lou, E. G., Fu, Y., Wang, Q., Treangen, T. J. & Stadler, L. B. Sensitivity and consistency of long- and short-read metagenomics and epicPCR for the detection of antibiotic resistance genes and their bacterial hosts in wastewater. J. Hazard. Mater. 469, 133939 (2024).

  • Arango-Argoty, G. A. et al. NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome 7, 88 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. Nanopore-based long-read metagenomics uncover the resistome intrusion by antibiotic resistant bacteria from treated wastewater in receiving water body. Water Res. 226, 119282 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liguori, K. et al. Antimicrobial resistance monitoring of water environments: a framework for standardized methods and quality control. Environ. Sci. Technol. 56, 9149–9160 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proctor, C. et al. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. Water Res. 211, 117997 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, K. A., Weir, M. H. & Haas, C. N. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. Water Res. 109, 310–326 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garner, E., Zhu, N., Strom, L., Edwards, M. & Pruden, A. A human exposome framework for guiding risk management and holistic assessment of recycled water quality. Environ. Sci. Water Res. Technol. 2, 580–598 (2016).

    Article 

    Google Scholar
     

  • Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, D. et al. Environmental stress mediates groundwater microbial community assembly. Nat. Microbiol. 9, 490–501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bautista-de los Santos, Q. M. et al. The impact of sampling, PCR, and sequencing replication on discerning changes in drinking water bacterial community over diurnal time-scales. Water Res. 90, 216–224 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gabrielli, M., Turolla, A. & Antonelli, M. Bacterial dynamics in drinking water distribution systems and flow cytometry monitoring scheme optimization. J. Environ. Manage. 286, 112151 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W. & Liu, W.-T. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms. Microbes Environ. 27, 9–18 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Preheim, S. P. et al. Computational methods for high-throughput comparative analyses of natural microbial communitie. Methods Enzymol. 531, 353–370 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS ONE 7, e52249 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z. et al. Challenges in benchmarking metagenomic profilers. Nat. Methods 18, 618–626 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meehan, C. J., Barco, R. A., Loh, Y.-H. E., Cogneau, S. & Rigouts, L. Reconstituting the genus Mycobacterium. Int. J. Syst. Evol. Microbiol. 71, 004922 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L., Lin, T.-Y., Liu, W.-T. & Ling, F. Toward characterizing environmental sources of non-tuberculous Mycobacteria (NTM) at the species level: a tutorial review of NTM phylogeny and phylogenetic classification. ACS Environ. Au 4, 127–141 (2024).

  • Velsko, I. M., Frantz, L. A. F., Herbig, A., Larson, G. & Warinner, C. Selection of appropriate metagenome taxonomic classifiers for ancient microbiome research. mSystems https://doi.org/10.1128/msystems.00080-18 (2018).

  • Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar
     

  • R: The R project for Statistical Computing (R Project, 2024).

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinforma. Oxf. Engl. 28, 3150–3152 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prestat, E. et al. FOAM (Functional Ontology Assignments for Metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Res. 42, e145 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White III, R. A. & Figueroa, J. Functional Ontology Assignments for Metagenomes (FOAM) database. Open Science Framework https://osf.io/muan4 (2023).